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Abstract 

We have significant accomplishments on uncertainty quantification in inverse problems 

for dynamical systems, generalized sensitivity and optimal design of experiments, 

elasticity and viscoelasticity modeling for buried target detection, and general inverse 

problem methodology for proliferating populations. 

Our efforts have continued on development of efficient accurate integration of Fokker 

Planck equations. Our objective is to analyze and optimize the dynamic behavior of  

nonlinear stochastic differential equations, especially the stochastic resonance effects 

based on the probability density function generated by the Fokker Planck equation. Our 

approach uses the backward characteristic method and the time-splitting integration of 

the Fokker Planck equation. 

 

 

 

Status/Progress 

1. Development of innovative computational approaches for general classes of Fokker-

Planck systems and uncertainty quantification: Our efforts on developing efficient 

accurate integration of  Fokker Planck equations have continued with success. One 

objective is to analyze and optimize the dynamic behavior of nonlinear stochastic 

differential equations, especially the stochastic resonance effects based on the probability 

density function generated by the Fokker Planck equation. One approach uses the 

backward characteristic method and the time-splitting integration of the Fokker Planck 

equation. We use cubic interpolation based on the solution and its derivatives to resolve 

the required accuracy. Then the solution and its derivatives are simultaneously updated 

by the backward characteristic method. We have successfully implemented a proposed 

time-splitting integration of the Fokker Planck equation. The method is very efficient and 

stable and allows one to have a large time-stepsize. We have used these methods to 

develop dynamic object identification and stochastic resonance techniques for detecting 

subliminal objects. In other efforts, we have developed fast computational methods for 

certain classes of Fokker Planck equations by conversion to an equivalent but simpler 

first order hyperbolic system with uncertainty in the coefficients which can be correctly 
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viewed as a random differential equation in which the coefficients are random variables. 

In [28] we consider this  alternative approach to the use of nonlinear stochastic Markov 

processes (which have a Fokker-Planck or Forward Kolmogorov representation for 

density) in modeling dynamic propagation of uncertainty in dynamic systems 

(populations of particles, individuals, etc.). These alternate formulations, which involve 

imposing probabilistic structures on a family of deterministic dynamical systems, are 

shown to yield pointwise equivalent probability densities which are solutions to the 

corresponding Fokker-Planck equations. Moreover, these formulations lead to fast 

efficient calculations in inverse problems as well as in forward simulations. In our most 

recent efforts we derive a broad class of nonlinear stochastic formulations for which such 

an alternate representation is readily found. We note that all of this is part of our efforts 

on uncertainty quantification/propagation in inverse problems. 

 

2.  Numerical methods for systems with discontinuous coefficients. We have developed a 

new multi-moment method for one-dimensional hyperbolic equations with discontinuous 

coefficients. The method is based on the backward characteristic method and uses the 

solution and its derivative as unknowns and cubic Hermite interpolation for each 

computational cell. An exact update formula for solution and its derivative for variable 

wave speed is derived and used for efficient time integration. At points of discontinuity 

we develop a piecewise cubic Hermite interpolation based on interface conditions. The 

method is extended to the one-dimensional Maxwell equation with 

variable material properties. The method is fully explicit unconditionally stable, and very 

efficient and accurate (third order in time and space). An extension to two-dimensional 

case has  been carried out [40].. 

 

3. Numerical methods were developed for elastic waves propagation in a Kelvin-Voigt 

media. The objective is to simulate an elastic wave launched by a thumper placed on the 

surface of the ground. and propagates through the homogeneous Kelvin-Voigt media and 

interacts with a buried target in the ground. We use the time-splitting method 

to treat the Kelvin-Voigt damping effect. A finite difference time-domain (FDTD) 

scheme based on the second order Yee's scheme is used for the elastic wave equation. 

The Perfect matched layer (PML) method is used for the absorbing boundary treatment. 

Numerical results demonstrate the applicability of the proposed method and the 

viscous media effect. Also, the fourth order Yee's scheme is developed and tested for 

elastic wave propagations. 

 

4. Inverse problems for nonlinear delay systems. We consider inverse or parameter 

estimation problems for general nonlinear nonautonomous dynamical systems with 

distributed and/or discrete delays. The parameters may be from a Euclidean set as usual, 

may be time dependent coefficients or may be probability distributions across a family of 

parameters as arise in aggregate data problems. New theoretical convergence results for 

finite dimensional approximations to the systems are given in [26]. Several examples 

(insect populations with time dependent maturation and death rate, cellular level HIV 

models with uncertainty in process delays, and models for changing behavior in response 

to alcohol therapy) are used to illustrate the ideas. Computational results that demonstrate 

efficacy of the approximations are presented for behavioral control systems. 
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5.  Generalized sensitivities and optimal experimental design: In an earlier work we 

considered the problem of estimating model parameters θ using a weighted least squares 

criterion  by introducing an abstract framework involving generalized measurement 

procedures characterized by probability measures. We take an optimal design 

perspective, the general premise (illustrated via examples) being that in any data 

collected, the information content with respect to estimating parameters  may vary 

considerably from one time measurement to another, and in this regard some 

measurements may be much more informative than others. Typical optimal design 

methods for inverse or parameter estimation problems are designed to choose optimal 

sampling distributions through minimization of a specific cost function involving the 

Fisher Information Matrix. It is hoped that the inverse problem will produce parameter 

estimates with increased accuracy using data from the “optimal” sampling distribution. In 

recent efforts [17] we compare three different optimal design methods.  These are two 

standard designs, D-optimal, and E-optimal, plus that proposed in our work, the SE-

optimal design.  The optimal sampling distributions from each design are used to 

compute and compare standard errors; the standard errors for parameters are computed 

using asymptotic theory and/or bootstrapping and the optimal mesh.  We use examples 

(the logistic equation, the harmonic oscillator, and a standard vector model for glucose 

homeostasis) to illustrate ideas and verify that the newly developed method is 

competitive and in some cases can be superior to D-optimal and E-optimal formulations. 

These studies have been carried out with uncorrelated data and we are now pursuing 

these investigations with data sets in which correlation is present and must also be 

estimated. 

 

6.  Dynamic evasion-interrogation games with uncertainty: We report new progress [25], 

[29]  on dynamic electromagnetic evasion-interrogation games in which the evader can 

use ferroelectric material coatings to attempt to avoid detection while the interrogator can 

manipulate the interrogating frequencies to enhance detection. The resulting problem is 

formulated as a two-player zero-sum dynamic differential game in which the cost 

functional is based on the expected value of the intensity of the reflected signal. In [29] 

we show that there exists a saddle point for the relaxed form of this dynamic differential 

game in which the relaxed controls appear bilinearly in the dynamics governed by a 

partial differential equation. We also have developed  a computational framework for 

construction of approximate saddle point strategies in feedback form for a special case of 

this relaxed differential game with strategies and payoff in the sense of Berkovitz. 

In one version of these problems, each player must incorporate significant uncertainty 

into their design strategies to disguise their intension and confuse their opponent. In [25], 

the evader is allowed to make dynamic changes to his strategies in response to the 

dynamic input with uncertainty from the interrogator. The problem is formulated in two 

different ways; one is based on the evolution of the probability density function of the 

intensity of reflected signal and leads to a controlled forward Kolmogorov or Fokker-

Planck equation. The other formulation is based on the evolution of expected value of the 

intensity of reflected signal and leads to controlled backward Kolmogorov equations. A  

number of numerical results are developed to illustrate the usefulness of the proposed 

approach in exploring problems of control in a general dynamic game setting. 
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7. Over the past three decades there has been interest in using Pad\'e approximants K as 

``reduced-order models'' for the transfer function   G of a linear system. The attractive 

feature of this approach is that by matching the moments of G one can reproduce the 

steady-state behavior of G by the steady-state behavior of K, for certain classes of inputs. 

Indeed, in [35] we illustrate this by finding a first-order model matching a fixed set of 

moments for G, the causal inverse of a heat equation. A key feature of this example is 

that the heat equation is a minimum phase system, so that its inverse system has a stable 

transfer function G and that K can also be chosen to be stable. On the other hand, 

elementary examples show that both stability and instability can occur in reduced order 

models of a stable system obtained by matching moments using Pad\'e approximants and, 

in the absence of stability, it does not make much sense to talk about steady-state 

responses nor does it make sense to match moments. In [35], we have reviewed Pad\'e 

approximants, and their intimate relationship to continued fractions and Riccati 

equations, in a historical context that underscores why Pad\'e approximation, as useful as 

it is, is not an approximation in any sense that reflects stability. 

  

8. The paper [39] is concerned with a problem of tracking regulation  for a 

one dimensional Kuramoto-Sivashinsky equation.  The objective in this work is  to 

design  dynamic and static controllers   to drive the state of the plant at the ends of the 

spatial domain to desired reference signals which may be time dependent.  The particular 

case of tracking constant  reference signals is referred to as the set point control problem. 

To solve our static and dynamic tracking problems we employ the zero dynamics inverse 

design methodology  recently developed  to solve a variety of tracking and disturbance 

rejection problems for linear and nonlinear systems. We also present  two  numerical 

examples  which illustrate  our theoretical results. 

 

9. In [33] we use the  zero dynamics inverse (ZDI) design methodology  for designing a 

feedback compensation scheme achieving asymptotic regulation  in the case when the   

measured variable is required to track a reference signal w. Following the nonequilibrium 

formulation of output regulation we formulate the problem of asymptotic regulation by 

requiring zero steady-state error together with ultimate  boundedness of the state of the 

system and the controller(s), with a bound determined by bounds on the norms of the 

initial data and w. Since a controller solving this problem depends only on a bound on the 

norm of w not on the particular choice of w, this formulation is in sharp contrast to both 

exact tracking, asymptotic tracking or dynamic inversion of a completely known 

trajectory and to output regulation with a known exosystem. 

 

The ZDI design consists of the interconnection, via a memoryless filter, of a stabilizing 

feedback compensator and a cascade controller, designed in a simple, universal way from 

the zero dynamics of the closed-loop feedback system. This design philosophy is 

illustrated with a problem of asymptotic regulation for a boundary controlled viscous 

Burgers' equation, for which we prove that the ``zero dynamics inverse" is input-to-state 

stable (ISS). In infinite dimensions, however, ISS compactness arguments are supplanted 

by smoothing arguments to accommodate crucial technical details, including the global 

existence, uniqueness and regularity of solutions to the interconnected systems. 
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